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1. INTRODUCTION

Let A be a grid partition of the plane [R2 with grid lines x = i, Y = i,
x +Y = i, and x - y = i, where i = ..., -1,0, 1, .... This partition is
sometimes called a type-2 or uniform criss-cross triangulation, and it forms
a 4-direction mesh. Let d and k be nonnegative integers. We denote by
S~(A) the space of all functions in C k([R2) whose restriction to each
triangular cell of the partition A is a restriction of an element of 7t d , the
space of all polynomials in x and y of total degree at most d. S~(A) is called
a space of bivariate splines. Clearly, for S~(A) to be nonempty, we must
have d> k. We will only study the case where d is the smallest integer m(k)
such that S~(A) contains at least one locally supported (Is) function f; and
by this, we mean that f is not identically zero, but vanishes outside a com
pact set. It is well known that m(3r) = 4r + 1, m(3 + 1) = 4r + 2, and
m(3r+2)=4r+4, r=O, 1, ... (cf. [5] and [9]). The support of an Is
function f in S~(.d) is the closure of the set on which f does not vanish and
is denoted by supp(f). A set S is called a minimal support of S~(A) if there
is some f in S~(A) with supp(f) = S, but there does not exist a nontrivial g
in S~(L1) with supp( g) properly contained in S. For both theoretical and
application purposes, it is important to determine all functions in S~(L1)
with minimal supports, and these functions will be called minimal suppor
ted (ms) bivariate splines.

Let Q = [0, n l ] <8> [0, n 2 ], where n I and n 2 are are positive integers, and
denote the space of all restrictions of functions in S~(Ll) on Q by S~(A, Q).

It is also well known (cf. [9]) that
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(4r + 3) _4(r + 2) 2
+ 2 2 +,

(4r+4)_ (r+2) 1+ 2 4 2 +,

dim S~;~~(.d, Q) = 3n1n2 + [3 ('; 3) -3] (n 1+ n2)

+(4r;6)_4(';3)+3.

Hence, the spaces St+l(LI), St~~(LI), and St~~(LI) should have two, one,
and three "linearly independent" Is bivariate splines, respectively. In [5],
de Boor and Hollig constructed two ms bivariate splines in S~; + 1(LI) and
one ms one in st~~(L1). It is therefore natural to expect that st~~(L1) has
three ms functions. In this paper, we will construct two ms bivariate splines
in st~~(L1) and prove, surprisingly, that ~very ms function in this srace
with convex support is som constant multiple of a translate of one of
them. Hence, the notion of quasi-minimal supported (qms) bivariate
splines is introduced as follows:

A function f in S~(L1) will be called a qms bivariate spline if

(i) f cannot be written as a (finite) linear combination of ms
bivariate splines in S~(LI), and

(ii) for any h in S~(LI) with supp(h) properly contained in supp(f), h
is some (finite) linear combination of ms bivariate splines in S~(L1).

We will construct a qms bivariate spline in S~;~~(j), and prove that any
qms function in this space with convex support is some constant multiple
of a translate of this function modulo a ms function. Hence, together with
the two ms bivariate splines, these three functions are the "unique" Is ones
with "smallest" possible convex supports, and it can be shown that they
generate all Is bivariate splines in this space. We remark that when the
definition of minimal support was given in [5], the word "uniqueness" was
used but no further discussion was included. In fact, the problem of uni
queness is still open if the convexity assumption is not imposed. We will
use the ntation IS~(L1) to denote the subspace of all Is functions in S~( j ),
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and IS~(L1, Q) the subspace of S~(L1, Q) that consists of all restrictions of
IS~(L1) on Q. We will show that the three Is bivariate splines (two ms and
one qms) in st~~(L1) form a spanning set of IS~~~~(L1,Q), but somewhat
surprisingly, IS~~~~(L1,Q) is all of S~~~~(L1,Q) if and only if r=O or 1.
Hence, if r ~ 2, some functions in st ~ ~(L1, Q) cannot be locally produced.
These results were announced in [6]. In addition, some algebraic and
approximation properties of the ms and qms bivariate splines in st~~(L1)

will also be included in this paper.
To study minimal and quasi-minimal supports, we need the following

notation. Iff is an Is function in S~(L1) whose support is a convex polygon,
it is clear that none of its vertices lies on the intersection of two grid lines,
and we will denote its support by

where db dz, ..., dg are nonnegative integers, indicating the number of units
(i.e., horizontal or vertical edges, or diagonals) of the partition L1 in the
"directions" e1-ez, el' ... , -ez, respectively, as shown in Fig. 1 below.
Here, and throughout, we use the usual notation e1 = (1, 0) and ez = (0,1).

For convenience, we will also use the notation

S,=S~~~~(L1)

IS, = ISt~~(L1)

S,(Q) = S~~~~(L1, Q)

ISAQ) = ISt~~(L1, Q).

It will be seen that the special case r = 0 is particularly important since the
general case is based on this example. Hence, we devote Section 3 to this
special case. In Section 2 we discuss some preliminary results on cone
splines (or truncated powers) which will be used as tools to prove that cer
tain supports are minimal or quasi-minimal. The general case of S, is
studied in Section 4.

FIGURE I
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2. PRELIMINARY RESULTS

for x + y ~ 0 and x ~ 0

for x> 0 and y ~ x

for x + y > 0 and x < 0

for x > 0 and y > x

for y > 0 and y < x

otherwise

and y~x

and y<x

otherwise

for x~O

for y~O

otherwise

In this section we give explicit formulation of two bases of Sr(Q). These
bases have been introduced in [9] where certain linear equations must be
solved. In the multivariate setting, the functions we discuss here are called
truncated powers in [11] and cone splines in [4]. We first consider the
case r = O. Let

\

x3(2y - x)

A/(x,y)= ~2X-y)y3

(x + y)4

4y 4+(X-y)3(5x+3y)
A 2(x, y) = 4y 4

o

1

(y-3x)(x+ y)3

A 3(x,y)= ~-X)3(Y+3X)

\ y(2x + y)

B](x,y)= (~3(X+2Y)

for y ~ 0 and x + y ~ 0

for x + y > 0 and x ~ 0

otherwise

for y ~ 0 and x + y ~ 0

for x+ y>O and x~O

for x > 0 and y ~ x

otherwise

and

Also, set AZ(x,y)=Ak(x-i,y-j) and Bg(x,y)=Bk(x-i,y-j), and con
sider the collections

and

where

£] = {AV: i= -2, , n] -1,j= -2, ..., n 2 -I}

£2 = {A~: i= -1, , n"j= -2, ..., n 2 -1,

with (i,j) # (-1, -1), (-I, -2), (0, -2)}



MINIMAL AND QUASI-MINIMAL BIVARIATE SPLINES 221

with (i,j);i (0, -1), (0, -2), (n l + 1, n2-1)}

F I = {BY: i = -1, ..., n l + 2,j = - 2, ..., n2 - 1}

F2= {B~: i=O, ..., n 1 + 1,j= -2, ..., n2-1,

with (i,j);i(n, + 1, -1),(n l +1, -2),(n" -2)}

and

F3 = {B~: i= -1, ... , nl,j= -2, ..., n2-1,

with (i,j);i(n l , -I),(n l , -2),(-1,n2-1)}.

We have the following.

LEMMA 1. Each Jt1 and PJ is a basis of So(Q).

Proof We only consider Jt1 since the proof for PJ is identical. Let

3

f(x, y) = L 2:a~AZ(x, y),
k = 1 i;

where all elements of E are used. Iff vanishes on the triangle with vertices
(0,0), (1,0), and (~, ~), then we have M,Pl = 0 and M 2P2 = 0, where

1 1 -1 2 0 0 2
0 0 2 0 2 1 2
1 1 1 4 2 1 4

M , = 0 2 0 0 2 1 6
1 1 4 8 2 1 6
1 4 1 8 2 1 8
1 3 3 16 1 1 5

0 0 0 -1 -I 0 1 -9 -9
0 0 0 1 1 0 2 -4 -4

M 2 = 1 1 1 0 0 0 2 0 0
-I -1 -1 0 0 4 I 1 I

0 0 0 I 2 0 0 2 4
0 0 0 0 0 0 0 2 4
0 I 2 0 0 0 0 2 4

PI = [ai l .- 1 a i 2.- 1ai 1,-2ai 2.-2 ag,-1 a~·-2a~·-2 + a1·- 2F, and P2 =
[a?,Oai1.Oai2,Oa?' -I a?, -2ag·o+a21.0a~·-1 +a~·-2a1,-la232F. Using the
assumption that f vanishes on the triangle with vertices (0,0), (0, I), and
(1,1), we have M 3 P3 = 0, where
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-1 0 0 -1 -1 0 1 -9 -9
1 0 0 1 1 0 2 -4 -4
0 0 0 0 0 0 1 -1 -1
0 1 1 0 0 0 2 0 0

M 3= 0 -1 -1 0 0 4 1 1 1
0 0 0 I 2 0 0 2 4
0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 1 2
0 1 2 0 0 0 0 2 4

and P3 = [a?,Oai 1,oai2,Oa?,-la?,-2ag,0 + ail,Oa~,-1 + a~' -2a~,-la~,-2]T.

Hence, PI = P2 = P3 = 0, and in particular,

ag,o + ail,o = 0, a~,-l + a~,-2 = o.

By considering f(x, y) = 0 on the triangle with vertices (0, I), (!, !), and
(1,1), we also have ag,o=O and a~,-I=O, so that ail,o=O and a~,-2=0,

This takes care of the first unit square. By repeating the same process on
each of the squares on the first row, then the second row, and so forth, we
may conclude that EO is a linearly independent set on Q, and since its car
dinality agrees with the dimension of So(Q), it forms a basis of this space.
This completes the proof of the lemma.

To consider the general case r > 0, we introduce the integral operators

(Jof)(x,y)=f f(s,y)ds
-00

(Jtf)(x, y) = foo f(s, y) ds
x

(Jd)(x, y) =r f(x, t) dt
-00

(JJf)(x, y) = f f(u, u + y - x) du
-00

(J4 f)(x, y) = foo f(v, x + y - v) dv
x

and set

In addition, let

D= -D,
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a'
DU= oyJ

Hence, it follows that

JD=Jl5=I,

where I is the identity operator on S" r ~ 1. It is clear that if S E S, _ 1, then
Js and Js are in S,. We also have the following.

LEMMA 2. For any S E S, where r ~ 1, Ds = - l5s is in Sr-l'

Proof Let Q 1 and Q 2 be two adjacent cells of the partition L1 with com
mon grid line defined by the linear equation l(x, y) = O. For any S E S" let
P,= S la" i = 1,2. Then since SE C3

,+2, we have

where q is a polynomial of total degree r + 1 (cf. [8]). Now, it is clear that

for some polynomial ij of total degree r. That is, Ds is in C3
(r- I) + 2 in the

closure of Q 1 U Q2' and is a polynomial of total degree 3(r -1) + 3 + r =
4(r - 1) + 4. This proves that Ds is in Sr l'

Next, consider the collections

E' = J's: s E EJ }
and

F= {JrS:SEFJ}.

Clearly, Er and Fare subcollections of Sr' In fact, by using Lemma 2 and
Lema 1 consecutively, it can be seen that any function in ISr(Q) is a linear
combination of functions in E', and is also a linear combination of
functions in F.

We also need the functions

A,.,=J'A j and

where i = 1, 2, 3. By simple computation, it can be shown that

Ai,r Ix';;Oandx+y:;>O= (x+ y)3r+6-i Pi

A I 3r+ 2 + ,-i,r y:;> 0 and y - x ,;; 0 = Y Pi

B I"~ Iy :;> 0 and x + y ,;; 0 = y3r + 2 + iq j
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B I ()3r+6-i-i,r x;;' 0 and y - x ;;. 0 = X - Y q i

for some polynomials Pi' Pi' qi, and iii of total degrees r-2+i, r+2-i,
r +2 - i, and r - 2 + i, respectively, where i = 1, 2, 3, Set

Pi =Pi,l +Pi,2

Pi=Pi,I +Pi,2

and

where Pi,l, Pi,t, qi,l' iii,l are homogeneous polynomials of degrees r - 2 + i,
r+2-i, r+2-i, r-2+i, respectively, and Pi,2, Pi,2, qi,2, iii,2 are
polynomials of degree r - 3 + i, r + 1- i, r + 1 - i, r - 3 + i, respectively,
We need the following,

LEMMA 3. For each i = 1, 2, 3, Pi.! is not divisible by x +y, Pi,I and qi.l
are not divisible by y, and iii,l is not divisible by x - y.

Proof It is sufficient to prove this result for Pl,l' since the others can be
verified in the same manner. Suppose, on the contrary, that

Pl,l(x, y) = yu(x, y)

for some polynomial u of degree r. Then

Dr[y3r+3pt ]=Dr[y3r+4u + y3r+3p1,2]

=Cly4+C2y3

for some constants Cl and C2' On the other hand, we also have

DrAt,r !y;;.oandy-x,;;o=A l ly;;'Oandy-x,;;O

Hence, 2x - y == elY + C2 which is a contradiction.

3, RESULTS ON So

In order to study the general case So it is necessary to establish several
results for r = O. We first discuss the Is functions s in So with
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supp(s) = {d" ..., dg} such that d" ..., dg are the smallest possible. Such
bivariate spline functions will be said to have smallest 8-tuple supports.

LEMMA 4. The supports of the nontrivial Is functions in So with smallest
8-tuple supports are

{I, 1, 1, 1, 1, 1, 1, 1},

or

{O, 2, 0, 2, 0, 2, 0, 2},

{2, 0, 2, 0, 2, 0, 2, 0 }.

Proof Let SESo with supp(s) = {d" ...,dg}. We first determine the
smallest d" d2, d3. Without loss of generality, assume that the lower left
vertex of supp(s) is at the origin. Let

By Lemma 1, with a simple translation along the x-axis, we may write

3

s(x,y)= L {[ak.d2 A%2,0(x,y)+ak,d2_,Af2- I,O(x,y)
k='

+ +ak,oA~·O(x,y)J + [ak,_,A,i;"I(X,y) +ak,_2A,i;2,2(x, y)

+ + ak._dlA,i;dldl(X, y)J}

for all (x, y) in

A =.6 n [{(x, y): x~O, O~x+ y~ 1} u {(x, y): 0~X~y+d2' O~y~ I}].

Since s(x, y) = 0 for all (x, y) in the triangles A, and A2 where the vertices of
A, are (-d"dd, (-d"d,+l), (-d,-!, d,+!) and those of A2 are
(d2, 0), (d2+ 1, 0), (d2+!, !), and A" A2C A, we have the linear system

au + 2a1,2 + ... + d2a"d2 = 0

al.o + ai,' + + al,dz = 0

a2,0 + a2,_1 + + a2.- d1 = 0

a2,0 + a2., + + a2,d2 = 0

a3,_' + 2a3,_2 + ... + d[ a3.-dl = 0

a3,0 + a3,_1 + ... + a3,-dl = O.

(1 )
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The smallest nonnegative integers d] and d2 for which the linear system has
a nontrivial solution are given by the paris

Similarly, by using the other basis in Lemma 1, the smallest d2 and d3 for a
nontrivial solution are the pairs

Hence, the "smallest" triples (d], d2 , d3 ) are

(1,1,1), (0,2,0), (2,0,2).

By the symmetry of the grid L1, we can conclude that the "smallest" 8-tuples
are the required ones. This completes the proof of the lemma.

In Figs. 2a, 2b, and 2c, we give the Bezier representation of three
functionsf? ,f~, andf~ in So with supports {I, 1, 1, 1, 1, 1, 1, I}, {O, 2, 0, 2,
0, 2, 0, 2 }, and {2, 0, 2, 0, 2, 0, 2, °}, respectively. f? and f~ were construc
ted by Sablonniere in [16], and f~ was constructed in [7].

It is stragithforward to verify that supp(f?) and supp(f~) are minimal,
but is not clear if f? and f~ are the only two ms functions in So. At this
stage, we can only show that f? and f~ are the only two ms functions with
convex supports in So, in the sense that any such function (denoted by
"ems function" in So) is a constant multiple of some translate of f? or f~.
We conjecture, however, that S, has no nonconvex supported ms splines.
Similarly, we will also show that f~ is "unique" among functions with con
vex quasi-minimal supports (cqms), and again conjecture that S, has no
qms splines with nonconvex supports.

Throughout, we will use the notation

f~i .)= f( .- j)

and

(2)

i = 1,2,3. We have the following result.

PROPOSITION 1. f? andf~ are ms functions in So andf~ is a qms function
in So' Furthermore, f?, f~, and f~ are unique among functions with convex
supports in the sense that iff is a cms function in So then f E 1'f u ~, and iff
is cqms in So then f - g E rj for some g E ~ with supp( g) c supp(f).
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481?

b

481~

c

F]GURE 2

Proof We first prove that f? and fg are ms bivariate splines. Although
there is a more direct proof, we introduce the following procedure which
can be adopted for the general case Sr' Suppose thatfESo with

supp(f) c supp(f?).

Let supp(f) c {d], ..., ds } c {1, 1, 1, 1, 1, 1, 1, 1}. Since d] + d2 ~ 2 and
ds + d1 ~ 2, in order that f ~ 0, we must have d] = d2 = ds = 1. Similarly,
d1 = ... = ds = 1. From the linear system (1), we have

640/52/2-S
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so that, for (x, y) EA,

f(x, y) = a2,I(Ai l,1 - Ag,o + A~'O)(x,y),

and this yields f - ell =°on A for some constant e =I 0, This shows that
supp(f- ell) ~ supp(f?) such that the smallest 8-tuple support of f - ef?
is properly contained in {I, 1, 1, 1, 1, 1, 1, I}, contradicting Lemma 4,
unless f - ef? == 0. This proves not only that f? is ms, but it is also the uni
que one with support contained in supp(fn

Suppose that supp(f) c supp(fg), and let supp(f) c {d l , , dg } c
{O, 2,0,2,0,2,0, 2}. Then by the same argument as above, {d l , , dg} =
{O 2, 0, 2, 0, 2, 0, 2}, and for (x, y) EA,

f(x, y) = adAi'o - 2A 1.0 + A?'O)(x, y)

+ a2,2(-A~,0+A~'O)(x,y).

In particular, on the triangle ,1,3 with vertices (0,0), (0, 1), and (1,0), we
have, for some constant e,

g(x,y) :=f(x, y)-efg(x, y)

= f(x, y) - adAi'o - 2Ai'0 + A?'O)(x, y).

Hence, gESo with supp(g)c{d l , ...,dg}c{0,2,0,2,0,2,0,2} such that
dl ~ 1. This contradicts the above conclusion, unless g == 0, of f== efg.

Next, we will prove that f~ is qms. Let f ESo such that

supp(f) c {dI' ... , dg} c {2, 0, 2, 0, 2, °2, °}
which is the support of f~. Then from this inclusion property and the
property that d l + d2 ~ 2, ..., dg + d l ~ 2, it is not difficult to verify that we
have either (d l , d2) = (2, 0) or (d l , d2)= (0, 2). If (db d2)= (0,2), then by
the same argument, we must have dg = 2, (d7 , d6 ) = (0, 2), so that
supp(f) c {O, 2, 0, 2,0, 2, 0, 2} = supp(fg), and f must be a constant mul
tiple of fg. Now suppose that (d l , d2 ) = (2, 0). Then from the linear system
(1), we have

a 1•0 = a2,0 = 0,

so that for (x, y) EA, we have

f(x, y) = a2,-2( -Ail,l + Ai 2,2)(X, y)

+ a3,_2(A~,0-2A31,1 +A 3
2,2)(x,y).
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In particular, for (x,y) in the triangle A4 with vertices (-1,1), (0,0),
(1,1), we have

f(x, y) = a3,_2(A~'0 - 2A 3 1,1 + A 3 2,2)(X, y)

and it follows that

g(x, y) := f(x, y) - cd~(x, y)

vanishes on this triangle, where C1 is some constant Now, by using a
similar argument, we have supp(g)c {O, 2, 0, 2, 0, 2, 0, 2}, so that

or

Hence, if supp(f) is properly contained in supp(f~), then C 1 =° or
f = cdg, where fg is ms. This conclusion also implies that fg is the only ms
spline with supp(fg) s; supp(f~), so that f~ cannot be written as a linear
combination of ms splines in So. That is,f~ is qms. We remark, in addition,
that iff is qms with supp fs; supp(f~), then f is unique in the sense that

From the Bezier represenation oUg andf~ (cf. Fig. 2), it is clear thatfcan
not vanish anywhere inside supp(f~). This shows that supp(f) must be a
convex set

We now consider the question of uniqueness. Let g be an Is function in
So such that supp(g) is a convex set Since no vertex of supp(g) lies in the
intersection of only two grid lines, we have

supp(g) = {d1 , ..., ds},

where d 1 , ... , ds are nonnegative integers. From the proof of Lemma 4, we
have

Suppose that both

and

d1 + d2 ~ 2, ..., ds + d1 ~ 2,

d1 + d2 + d3 = ds +d6 + d7

d7 +ds + d1 = d3 +d4 +ds·

(3 )
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are satisfied. Then it is easy to verify that supp(g) must contain one of the
following 8-tuple regions:

{O, 2, 2, 0, 2, 0, 2, 2}, {l, 1,2,0,2,0,2,1},

{2, 0, 2, 0, 2, 0, 2, O}, {3, 1, 1, 1,3,0,2, O}.

Since each of these four regions contains the support of a translate off~, g
is not minimal supported. In addition, the same observation implies that if
g is qms, supp(g) must be the support of a translate f~, namely, {2, 0, 2, 0,
2, 0, 2, O}. The above argument, therefore, implies that

g=cd~J+cd~J' C 1 #0,

for some j E Z2. This proves the "uniqueness" of f~.
Suppose that at least one of (dl + d2 + d3 ) and (d7+ dg + dd is smaller

than 4. By symmetry of the mesh, we may assume, without loss of
generality, that d l + d2 + d3 ~ 3. Using (3), we then have

1~ d2 , d6 ~ 3,

O~dl' d3 , ds, d7~ 1,
and consequently,

It follows that supp(g) is a finite union of some supp(fU and supp(f~J,

where iJ E Z2. Hence, if g is ms, we must have supp(g) = supp(f? J or
supp(f~J; the above conclusion implies that g is a constant multiple of f?,i
or ft. This completes the proof of the proposition.

4. RESULTS ON S" r ~ I

Let M be the ms spline in S1(Ll) first introduced by Zwart [17], Powell
[14], and Powell and Sabin [15] independently, and later studied in detail
in [10]. Its support and Bezier representation are given in Fig. 3. We now
construct n, i = 1,2, 3, by convolution, namely,

n = f?*M* ... *M.---------
As before, let T~, i = 1, 2, 3, be the collection of all constant multiples of

translates ofn. It is clear that

supp(fD= {r+ 1, r+ 1, r+ 1, r+ 1, r+ 1, r+ 1, r+ 1, r+ I}

supp(f;) = {r, r + 2, r, r + 2, r, r + 2, r, r + 2}
and

supp(f;) = {r + 2, r, r + 2, r, r + 2, r, r + 2, r}.
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FIGURE 3
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We will see thatj; andj~ are ms functions in Sr andj; is a qms function in
Sr' The following lemma is needed.

LEMMA 5. ' The supports oj the nontrivial Is junctions in Sr with smallest
8-tuple supports are

{r+ 1, r+ 1, r+ 1, r+ 1, r+ 1, r+ 1, r+ 1, r+ 1}

{r, r + 2, r, r + 2, r, r + 2, r, r + 2}

{r+2, r, r+2, r, r+2, r, r+2, r}.

Proof Let {d I' ..., dg } be an 8-tuple support of a nontrivial Is function j
in Sr' We first determine the smallest db d2 , d 3 , so that by a rotation, the
other integers can be determined. The procedure of our proof follows that
of Lemma 4 and we use the same notation such as.6, A, AI, and A2' Hence,
an expression of Dj which is similar to that of s in the proof of Lemma 5 is
obtained. Here, we recall that D = Dj D 2 - D I D~. Applying the operator J',
we have

j(x, y) = JrDj(x, y)

= (ad2Af:;o + '" + aoA?:~ + a -I A J:rl,l + + a -dl A J:rdl.dl

+ bd2A~:;o+ +boA~:~+b_IAi,/,l+ +b_AAi,/I,dl

+ Cd2A~:;o + + coA~:~ + C I Ai/· I + + Cdl Ai/I.d)(x, y)
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for all (x, y) EA. Since the above expression is obtained by using operator
J' and Ai,r = J'Ai' and/vanishes on Al U A2' it can be seen that the follow
ing identities hold,

a
O

A 0,0 + .,. + a d A - dt,d, = 0
l,r - I l,r

b A d2,0 + .. , + b A 0,0 = 0
d2 2,r 0 2,r

for all (x, y) E Al U A2' Observe, however, that

A¥~(x, y) = (x - 0'+ I y3r+3 + o(y3r+3),

A;-::·i(X, y) = (x + O'-I(x +y)3r+5 + o«x +y)3r+5),

A~~(x, y) = (x - if y3r+4 + o(y3r+4),

Ai:,i (x, y) = (x + i)'(x +y)3r+4 + o«x +y)3r+4),

A~~(x,y) =(x_i)r-l y3r+5+ o(y3r+5),

and

(X,y)E}'1

(X,Y)EA 2

(X,Y)EA 1

(X,Y)EA2

(X,Y)EA 1

where o(ZS) denotes a term with a factor Zl where the largest t is smaller
than s. Hence, the three pairs of identities we obtained above become

d2

L ai(x - 0' + I = 0
i=O

d,

L a_;(x+O'-I=O
i=O

d2

L bi(x-O'=O
;=0

d,

L b_i(x- 0' = 0
i=O

d2

L e;(x-O'-I=O
i=O

d,

L clx+O'+ I =0,
i=O
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It now follows that the smallest pairs (d" dz) that allow nontrivial
solutions of {ai' hi, c;} in these three pairs of identities must be
(r + 1, r + 1), (r, r + 2), and (r + 2, r). Similarly, by using the spanning set
F, the smallest pairs (dz, d3 ) are (r + 1, r + 1), (r + 2, r), and (r, r + 2). This
completes the proof of the lemma.

We are now ready to establish the main theorem of the paper.

THEOREM 1. Let r~O. Thenf~ andf; are msfunctions in Sr andf; is a
qms function in Sr' Furthermore, f~, f;, and f; are unique among functions
with convex supports in the sense that if f is cms in Sn then f E T~ u T;, and
iff is cqms in Sn then f - gET; for some gET; with supp( g) c supp(f). In
addition,fi,f;, andf; together form a (positive) partition of unity; that is,
f~ ,f;,f; ~ 0 and

3

I L1;( . - j) == 1.
jEZ2 ;= 1

(4 )

Proof The proof follows almost exactly as that of Proposition 1. For
instance, in proving that f; is ms, the only required change is extending A3

to the set SUPP(f;) n {(x, y): 0 ~ x +y ~ 1}, and in proving that f; is qms,
the required change is replacing A4 by the set supp(f;) n {(x, y): 0 ~ y:( 1}.

To study the question of uniqueness, (3) must be replaced by

d, + dz~ 2r + 2, ..., dB + d, ~ 2r + 2

d, + dz + d3 = ds + d6 + d7

d7 + dB + d, = d3 + d4 + ds.

Then it can be proved that if the inequalities

and

(5)

are satisfied, the 8-tuple {d" ..., dB} which was assumed to be the support
of an Is function g in Sr must contain one of the following four 8-tuple
regions:

{r, r + 2, r + 2, r, r + 2, r, r + 2, r + 2}

{r + 1, r + 1, r + 2, r, r + 2, r, r + 2, r + l}

{r + 2, r, r + 2, r, r + 2, r, r + 2, r}

{r + 3, r + 1, r + 1, r + 1, r + 3, r, r + 2, r}.
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Since each of these four regions contains supp(h) for some hE T;, g is not
ms. In addition, if g is qms, the support of g must be the support of a trans
late of j;, namely the third 8-tuple support listed above. This proves "uni
queness" ofj;.

If d} + d2 + d3 ~ 3r + 3 or d7 +dg + d 1 ~ 3r + 3, then (5) implies d2 , d4 ,

d6 , dg ~ r + 1. The same argument as that in the proof of Proposition 1
yields that if g is ms, then supp(g) = supp(f~,J or supp(f;), where the
second subscript i denotes some translate by i EZ2,

The prove the identity (4), we recall that the special case r =°was
already obtained in [7] (cf. [7, Theorem 2]). Since it can be verified that
Mr*1 == 1, the proof of the theorem is completed.

Next, we discuss the problem of local basis. Analogous to a result of de
Boor and Hollig (cf. [4, Proposition 4.2] and [5, Theorem 2]), we have
the following. Since the proof is similar to the one given in [3], we do not
include it here.

PROPOSITION 2. Let G be a closed convex set. Then the collection
{I~,i,f;,i,f3,i:i E Z2 n G} spans the space

Using this result, we are now ready to prove the following.

THEOREM 2. ISr(Q) = Sr(Q) if and only if r = 0, 1.

Proof Suppose that ISAQ) = SAQ). Then the above proposition
implies that Sr(Q) is spanned by

{IE T~ u T; u T;: supp(f) n Q # 0}·

Hence, dim Sr(Q) does not exceed the dimension of this spanning set,
which in turn, does not exceed the upper bound

(n] + 3r+ 1)(n2 + 3r+ 1) + (n] + 3r+ 2)(n2 + 3r+ 2)

+ (n] + 3r + 3 )(n2 + 3r + 3) = 3n1n2 + (9r +6)(n] + n2)

+ (3r+ 1)2 + (3r+ 2)2 + (3r+ 3f.

This yields the inequality

(
r+3)3 2 - 3~9r+6

or r2
- r ~ 0, so that r = 0, 1.
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Conversely, assume that r = 0 or I, so that

3(r + 2) > (4r + 4).

Let P=span{pi'~iJ, ...,P~JJ}' where 3r+2<s~I~4r+4, (i,j)EZ2
,

p;':;)x, y) = (x - i)/-S yS+

P~:i)X, y) = (x +y- i - j)/-S(y_ x- j + i)s+

P~~i)X, y) = (y - j)/- 5 x s+

and

(6)

1S ( ) ( . ')/- S( . ')SP4,iJ x, Y = x - y - I - ) X +Y - 1+} +.

In addition, let B = span {b(- - (i, j) I Xn}, where k = 1, 2, 3, (i, j) E Z2, and
b( . I Xk) is the box spline with directions Xk, defined as

X~ = tel' ..., e l , e j +e2' ..., el +e2' e2' ..., e2' e2-e l , ..., e2-e1}
--...-~ -......-..-~

r+2 r+2 r+2 r

Xl = {e I , ..., e j , e 1 + e2, ..., e I + e2, e2, ... , e2, e2 - e 1 , ',., e2 - e I }

-......-..- -----~ --------r+l r+2 r+2 r+l

X; = {e l , ..., e l , e l +e2, ..., e j + e2' e2, ..., e2' e2-e l , ..., e2-el}'
~~-------~

r r+2 r+2 r+2

It is well known that B=ISr(Q) (cf. [3J) and

Sr(Q) = TC 4r +4 + P+ B

(cf. [1,4, 12J). Hence, it is sufficient to prove that both TC 4r + 4 and Pare
contained in B. It has already been proved by Jia [13 J and Bamberger [1 J
that

max{m: TCm-l c B} =min{3r+6, 4r+ 5}.

Thus., in view of (6), we have TC 4r + 4 C B. To show that PcB, it is sufficient
to prove

3r + 2 < s ~ I ~ 4r + 4, (i,j) E Z2, k = 1, ..., 4. (7)

We only verify this fact for k = 1. Set

KL,J =: span {P~~iJ: 3r + 2 < s ~ l},

where I ~ 4r + 4. We first show that

K4r+4 C B
1.0,0 .
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Let C(. I X~) denote the cone splines (sometimes also called truncated
powers) with directions X~ and vertex at the origin. Following de Boor and
DeVore [2J and de Boor and Hollig [4J, we consider the linear map La,b
from span{C( . I X~): i = 1, 2, 3} into the corresponding univariate spline
space Su,r = Su,r(t 1, .", ( 4), where a, bE 1R 2

, defined by

(La,bf)(f)=f(a+bf), fEIR.

Of course, the break points f I' "., f 4 are determined by the intersection of
the vector a + bf with the grid lines el' e l + e2, e2' e2- e1 • Now, let

Then M~ are univariate B splines with knots indicated below:

M 1(·)= M 1(·1 f l , ... , f l , f 2 , ... , f 2 , f 3 , ... , f 3 , f 4 , ... , ( 4 )---- ----- -----------r+2 r+2 r+2 r

MS( . ) = MS( . I t I' ... , f I' f 2' ... , t2, t3, ... , t3, f 4 , ... , t4 )----- ---------------r+l r+2 r+2 r+l

M 3(·)=M3(·1 fl> ..., f l , f 2 , ... , f 2 , f 3 , ... , f 3 , f4 , ..., ( 4 )·---- ----~----r+2 r+2 r+2

The space Su,r I[It,IZ] of restrictions of functions (La,bf)(f), with f in Kto~o4,

on the interval [f I' f 2J has dimension r + 2. Hence, Su.o I [IIoIZ] has basis
{M?, M~} and Su,1 1[IIoIZJ has basis {ML ML Mj}. Since both the cone
splines C(·I X~) and the functions in Kiro+o4 are homogeneous functions of
degree 4r + 4, we conclude that for each lin Kto~o4

, there exist constants a~
(i = 0, 1 if r = 0, and i = 0, 1, 2 if r = 1) such that

f(x, y) - L a~ C(x, y I X~) = 0

on the cone {(x, y): 0 ~y ~ x}, where r = 0, 1, so that f - Li a~ C(·I X~) is
supported in the cone {(x, y): y ~ 0 and y ~ x}. Therefore, by using a well
known result in [3J, we have Kiro+o4c.B. By using the translation
invariance property, we also have j;t;4 c. B, for (i,j) E Z2. Since all
function in Kto~o3 can be written as linear combinations of functions from
Kirit 4, where i E Z, the same argument also yields Kirov c. B, and hence,
Kfi; 3 c. B, and so forth. This verifies (7) for k = 1. He~~e, Pc. B.

5. QUASI-INTERPOLATION FORMULAS

We have already seen from Theorem 1 that the ms and qms splines f;,
fS, f; form a partition of unity. To improve the approximation order, it is
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necessary to construct quasi-interpolation formulas. Since the linear
algebra involved in obtaining such formulas is very complicated, we only
consider the special case r = 1 in this paper.

Let lY.ij and Pij be linear functionals on C(Q) defined as

lY.ij(g)=ig(i-!,j-!)

- Hg(i - l,j -1) + g(i - l,j) +g(i,j - 1) +g(i,j)]

and

Pi/g) = i g(i,j) - ![g(i - !,j -!) + g(i - !,j +!)

+ g(i +!, j - !) +g( i + !, j +!)].

We have the quasi-interpolation formula

It can be verified that

vanishes at all grid points of the partition L1 for all g E 11:3 and m + n ::s; 2.
This yelds the following

PROPOSITION 3. Q(g)=g for all gin 11:3'

Let 1= [0, 1] and for each g E C(I2), define

(Qn g )(x, y) = (Qg )(nx, ny).

By a standard argument in approximation theory, we obtain the following
result.

PROPOSITION 4. If g E C(I2), then

If, in addition, gECk(P), then

4k

IIQ g gil -/6 (max Ilg(r.s)III2) n- k ,
n - p",::: k! r+s~k

where k = 1, 2, 3, 4.
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6. FINAL REMARKS

The techniques introduced in this paper can be extended to the study of
minimal and quasi-minimal supported splines on any regular mesh in ~s.

In a forthcoming paper, we will study recurrence relations, computational
schemes, and other important properties of these functions. It should be
emphasized that we have only considered ms and qms functions with con
vex supports. However, we do not anticipate the existence of ms and qms
functions whose supports are not convex in the case of regular grid
partitions.

REFERENCES

I. L. BAMBERGER, "Zweidimensionale Spline auf Regularen Triangulation," Doctoral Disser
tation, Munchen, West Germany, 1985.

2. C. DE BOOR AND R. DEVORE, Approximation by smooth multivariate splines, Trans. Amer.
Math. Soc. 276 (1983), 775-788.

3. C. DE BOOR AND K. HOLLIG, B-splines from parallelopipeds, J. Analyse Math. 42
(1982/83), 99-115.

4. C. DE BOOR AND K. HOLLlG, Bivariate box splines and smooth pp functions on a three
direction mesh, J. Comput. Appl. Math. 9 (1983), 13-28.

5. C. DE BOOR AND K. HOLLlG, Minimal support for bivariate splines, J. Approx. Theory
Appl., in press.

6. C. K. CHUI AND T. X. HE, On quasi-minimal supported bivariate splines, in
"Approximation Theory" (c. K. Chui, L. L. Schumaker, and 1. D. Ward, Eds.), Vol. V,
pp. 303-306, Academic Press, New Yark, 1986.

7. C. K. CHUI, T. X. HE, AND R. H. WANG, The C 2 quartic spline space on a four-direc
tional mesh, J. Approx. Theory Appl., in press.

8. C. K. CHUI AND R. H. WANG, On smooth multivariate spline functions, Math. Compo 41
(1983),131-142.

9. C. K. CHUI AND R. H. WANG, Multivariate spline spaces, J. Math. Anal. Appl. 94 (1983),
197-221.

10. C. K. CHUI AND R. H. WANG, On a bivariate B-spline basis, Sci. Sinica 27 (1984),
1129-1142.

11. W. DAHMEN, Multivariate B-splines-recurrence relations and linear combinations of trun
cated powers, in "Multivariate Approximation Theory" (W. Schempp and K. Zeller, Eds.)
pp. 64--82, Birkhauser, Basel, 1979.

12. W. DAHMEN AND C. A. MICCHELLI, On the optimal approximation rates from criss-cross
finite element spaces, J. Comput. Appl. Math. 10 (1984), 257-273.

13. R. Q. JIA, Approximation by smooth bivariate splines on a three-direction mesh, in
"Approximation Theory" (c. K. Chui, L. L. Schumaker, and J. Ward, Eds.), Vol. IV,
pp. 539-543, Academic Press, New York, 1983.

14. M. J. D. POWELL, Piecewise quadratic surface fitting for contour plotting, in "Software for
Numerical Mathematics" (D. J. Evans, Ed.), pp.23-271, Academic Press, New York,
1969.

15. M. J. D. POWELL AND M. A. SABIN, Piecewise quadratic approximation on triangles,
ACM Trans. Math. Software 3 (1977), 316--325.

16. P. SABLONNIERE, "Bases de Bernstein et approximants splines," Diss. L'Universite de LilIe,
1982.

17. P. ZWART, Multivariate splines with nondegenerate partitions, SIAM J. Numer. Anal. 10
(1973), 665-673.


